

Design Studies and Plasma Confinement

T. Tsunematsu Japan Atomic Energy Agency

Why Fusion? - Fusion as an Innovative Energy Candidate -

Why NOT Fusion

High Energy Generation RatePlentiful Fuel Resource

Fusion can generate energy equivalent to 8 tons of oil with 1g DT fuel

Fuel weight of 1 year in 1 GW Plant Fusion : 0.2 tons Oil : 1,400,000 tons Deuterium concentration in sea water:33g/m³

Tritium can be produced by nuclear reaction with lithium in a fusion reactor. Lithium concentration in sea water: 0.2g/m³

Fusion: abundant and inexhaustible energy

Energy favorable for environment Advanced Technologies and safety

Ash is helium

No carbon dioxide, nitric oxide

Reaction can be easily stopped by closing the fuel supply valve similar to a gas burner

Fusion will promote advanced technologies such as superconducting magnet, robot, heat resistance materials, ion beam, microwaves etc..

Conceptual Step for Realization of Fusion Power

T-3 Tokamak and L. A. ARTSIMOVICH Novosibirsk, USSR(RF)

Historical Result of T-3 Tokamak

$T_e \sim 100-2000eV$, $T_i \sim 300 eV$, $n_e \sim 10^{12}-5x10^{13} cm^{-3}$, $T_E \sim 10 ms$. From the presentation at the 3rd IAEA conference (1968, Novosibirsk)

This result was confirmed by the Thomson scattering measurement, which was performed by Culham group (1969).

Ref: M.J. Forrest, N.J. Peacock, D.C. Robinson, V.V. Sannikov, P.D. Wilcock;

"Mesurement of the Parameters in TOKAMAK T3-A by Thomson Scattering" CLM-R 107 (July, 1970)

Progress of International Project

and the second sec

year		1	9		-																1
79-87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06	07	80
		- Color				L CH			A COL O	5 a											
INTOR	Coi Desi (nceptu gn Act (CDA)	ual ivity			Engi (Detail R&D f	neerir (EDA) engin for Ex	ng Des (for 6 leering perim	sign A years g desi ental i	ctivity s) gn an reacto	d for	tensio (for 3 y comp	on peri years) act IT	od ER	Co T	oordin Arran ransiti (ation igeme ion Ari CTA,	Techn ent, IT range ITA)	iology ER ment	Conce	or 10 years
US-US in	SR S 198														Go C	verr	nme eren	ntall ce	Est or	ablish ITER ganiz	ation

INTOR: Review the possibility of construction for the next generation fusion machine under the international cooperation. (Planned and managed by IAEA from 1979 to 1987) Participants; Japan, US, EC, Soviet Union. Chairman; Dr. S. Mori vice-president of JAERI

Major Results obtained through International Collaboration for Fusion Experimental Reactors

10 Bit							
INTOR :	list up of key issues, Database (compilation of existing database in participating parties)						
(1979~1987)	utilize data from medium or small size devices						
ITER-CDA:	make an unified concept, determine a scenario for detailed design, expecting factor of 2 confinement improvement from L-mode,						
(1988~1990)	(→ confinement improvement studies such as US TTF) kick-off for establishing an integrated database						
ITER-EDA (1992~2001)	: Detailed Design, R&D to obtain prospect for ITER construction assuming H-mode confinement, intensive collection of disruption data, etc.						
	establish a standard database (ITER Physics R&D, ITPA) set up of requirements to the ITER site and construction plan						
ITER-CTA,ITA : (2001~)	same as above						
From now: (2008~)	ITER Construction, Operation, R&D, Decommissioning						

Road Map to Fusion DEMO Reactor -Example of Japan-

ITER Project

TER

DG

Principal

DDG

Safetv/

~"⊬¥−

ストラスブー

189

France

ドイツ

ルクセンブルク

ウビテン

スイス

Demonstration of technologies essential to fusion power reactor

Integrated testing of the high-heat-flux and nuclear components required to utilize fusion energy for practical use

> **1988-1990: Conceptual Design Activities** 1992-2001: Engineering Design Activities 2001-2002: Coordinated Technical Activities 2003-2006: ITER Transitional Arrangements 2007-: ITER Construction

Concept for Fusion Power Plant

Technical Objectives of ITER (1)

Plasma Performance:

 to achieve extended burn in inductively driven plasma with the ratio of fusion power to auxiliary heating power, Q, of at least 10 (Q ≥ 10) with a burn duration between 300 and 500 s,

 to aim at demonstrating steady state operation using non-inductive current drive with Q>5,

 In addition, the possibility of controlled ignition should not be precluded.

Plasmas similar to power plant level will be achieved in the ITER

Technical Objectives of ITER (2)

Engineering Performance and Testing:

- demonstrate availability and integration of essential fusion technologies,
- test components for a future reactor,
- test tritium breeding module concepts; with a 14MeV neutron average power load on the first wall > 0.5 MW/m² and fluence 0.3 > MWa/m²,
- the option for later installation of a tritium breeding blanket on the outboard of the device should not be precluded.

ITER Physics R&D

Expert Groups in EDA (1992 - 2001) Confinement & Transport Confinement Modeling and Database Disruption, Control, MHD Divertor Divertor Divertor Modeling and Database Diagnostics High Energy Particle Physics, Heating & Current Drive

Topical Physics Groups in ITPA (2001-) Transport Physics Confinement Database and Modelling Edge Pedestal Physics Scrape-off-layer and Divertor Physics MHD Steady State Operation Diagnostics

Tokamaks in the world

Energy Confinement in ELMy H-mode

Selection of ITER Design

Main Parameters of ITER

Total fusion power	500 MW			
Additional heating power	50 MW (75MW)			
Q - fusion power/ additional heating power	≥ 10			
Average 14MeV neutron wall loading	≥ 0.5 MW/m2			
Plasma inductive burn time	300-500 s *			
Plasma major radius (R)	6.2 m			
Plasma minor radius (a)	2.0 m			
Plasma current (Ip)	15 MA			
Toroidal field at 6.2 m radius (BT)	5.3 T			

* under nominal operating conditions

2

A Start

Major Plasma Control Tools

magnetic configuration heating & Current Drive fueling

impurity injection
particle exhaust
First Wall (material, conditioning, etc.)

Heating &	Input Po	wer (MW)	remarks			
Current Drive System	The day one	Upgrade possibility				
NB(1MeV)	33	+ 17				
EC(170GHz)	20	+20	horizontal port and upper port			
EC(~127GHz)	>2		plasma start-up			
IC(~50MHz)	20	+20				
LH(5GHz)	-	+40				
Total	~75 MW	+ 37 MW				

Operation Space for Q=10

-density limit <Greenwald density

-normalized β <2.5

-access to ELMy H-mode P_{loss}>P_{LH} threshold power

 $P_{LH} = 0.042 n_{20}^{0.73} B_{t}^{0.74} S^{0.98} (MW)$

~10% margin in confinement improvement

High normalized beta beyond the ITER standard operation has been sustained for about wall saturation time near the divertor

Operation Space for Q>10 (Inductive)

Ip=15MA, Q=20

Ip=15MA, Q=50

Long Burn with Inductive and Non-inductive Hybrid Operation

R/a=6.35/1.85m Ip=12MA, Weak Positive Magnetic Shear Mode, External Auxiliary Heating=100MW

test breeding Blanket Modules [0.3 Mwa/m²]

~5,000 Shots (~500MW,2500s Op.)

is achievable within fatigue life time.

Highly self-organized plasma was sustained

Key is pressure and current profile control near internal transoprt barrier with flexible beam heating/CD and fine diagnostics

ITER 7 Major R&D in EDA

L1:Central Solenoid Model Coil

L7:Divertor Remote Handling

L5:Divertor Cassette

L2:TF Model Coil

L4:Blanket Module

L6:Blanket Remote Handling

L3:Vacuum Vessel Sector

Burning Plasma

Discovery of Internal Transport barrier

Innovation of Thermal-Hydraulic Simulation

the

Computer Performance

Upgrade

Remaining issues for the conventional thermal-hydraulic design method. Simple modeling of a complex thermal-hydraulic

 Simple modeling of a complex thermal-hydraulic behavior in the blanket module based on the experimental correlations and numerical models.

Data base of thermal-hydraulic properties in the blanket module.

Large budget for preparation of the test facilities.

Application of the innovative thermal hydraulic Design Method.

Development of simulation-oriented thermal-hydraulic design.

•Simulation of the complex thermal-hydraulic behaviors.

● Safety evaluation and optimization of the reactor. design only by computer simulation[[] Design by Analysis].

An Example of two phase flow thermal-hyrdralic simulation for Fission reactor

Multi-Scale Simulation for Fusion Reactor Materials

Aim at establishing multi-scale modeling covered from the microscopic defect formation by the irradiation to the global mechanical properties.

Role of the Simulations

- Analysis of phenomena through modeling.
- Prediction of related phenomena.

and the second se

- Comprehensive understanding to the background.
- Impact assessment of element research (to evaluate the "value" in the project).

Summary

ITER has been designed under international cooperation as a device based on knowledge and database obtained in present major tokamaks in the world, and also as a device that can be constructed by using proven technologies. This is a result of long-term international collaboration coordinated in a "proper" way.

For ITER and DEMO, a focused and wide research activities are required in more "proper way". i.e. interactions among basic science and project. A "human-flow" among the research areas may be a useful and powerful way.